Copied to
clipboard

G = C23⋊Dic5order 160 = 25·5

The semidirect product of C23 and Dic5 acting via Dic5/C5=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23⋊Dic5, C23.2D10, (C2×C4)⋊Dic5, (C2×C20)⋊6C4, C54(C23⋊C4), (C2×D4).3D5, (C2×C10).2D4, (C22×C10)⋊2C4, (D4×C10).6C2, C23.D52C2, C22.2(C5⋊D4), C2.5(C23.D5), C22.3(C2×Dic5), C10.26(C22⋊C4), (C22×C10).6C22, (C2×C10).49(C2×C4), SmallGroup(160,41)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C23⋊Dic5
C1C5C10C2×C10C22×C10C23.D5 — C23⋊Dic5
C5C10C2×C10 — C23⋊Dic5
C1C2C23C2×D4

Generators and relations for C23⋊Dic5
 G = < a,b,c,d,e | a2=b2=c2=d10=1, e2=d5, ab=ba, dad-1=ac=ca, eae-1=abc, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

2C2
2C2
2C2
4C2
2C22
2C4
4C22
4C22
20C4
20C4
2C10
2C10
2C10
4C10
2D4
2D4
10C2×C4
10C2×C4
2C20
2C2×C10
4Dic5
4C2×C10
4Dic5
4C2×C10
5C22⋊C4
5C22⋊C4
2C2×Dic5
2C2×Dic5
2C5×D4
2C5×D4
5C23⋊C4

Smallest permutation representation of C23⋊Dic5
On 40 points
Generators in S40
(1 14)(2 35)(3 16)(4 37)(5 18)(6 39)(7 20)(8 31)(9 12)(10 33)(11 30)(13 22)(15 24)(17 26)(19 28)(21 32)(23 34)(25 36)(27 38)(29 40)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 36)(12 37)(13 38)(14 39)(15 40)(16 31)(17 32)(18 33)(19 34)(20 35)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 14 6 19)(2 13 7 18)(3 12 8 17)(4 11 9 16)(5 20 10 15)(21 36 26 31)(22 35 27 40)(23 34 28 39)(24 33 29 38)(25 32 30 37)

G:=sub<Sym(40)| (1,14)(2,35)(3,16)(4,37)(5,18)(6,39)(7,20)(8,31)(9,12)(10,33)(11,30)(13,22)(15,24)(17,26)(19,28)(21,32)(23,34)(25,36)(27,38)(29,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(21,26)(22,27)(23,28)(24,29)(25,30), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,14,6,19)(2,13,7,18)(3,12,8,17)(4,11,9,16)(5,20,10,15)(21,36,26,31)(22,35,27,40)(23,34,28,39)(24,33,29,38)(25,32,30,37)>;

G:=Group( (1,14)(2,35)(3,16)(4,37)(5,18)(6,39)(7,20)(8,31)(9,12)(10,33)(11,30)(13,22)(15,24)(17,26)(19,28)(21,32)(23,34)(25,36)(27,38)(29,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(21,26)(22,27)(23,28)(24,29)(25,30), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,14,6,19)(2,13,7,18)(3,12,8,17)(4,11,9,16)(5,20,10,15)(21,36,26,31)(22,35,27,40)(23,34,28,39)(24,33,29,38)(25,32,30,37) );

G=PermutationGroup([[(1,14),(2,35),(3,16),(4,37),(5,18),(6,39),(7,20),(8,31),(9,12),(10,33),(11,30),(13,22),(15,24),(17,26),(19,28),(21,32),(23,34),(25,36),(27,38),(29,40)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,36),(12,37),(13,38),(14,39),(15,40),(16,31),(17,32),(18,33),(19,34),(20,35),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,14,6,19),(2,13,7,18),(3,12,8,17),(4,11,9,16),(5,20,10,15),(21,36,26,31),(22,35,27,40),(23,34,28,39),(24,33,29,38),(25,32,30,37)]])

C23⋊Dic5 is a maximal subgroup of
C23.D20  C23.2D20  C23.3D20  C23.4D20  C242Dic5  (C22×C20)⋊C4  C42⋊Dic5  C423Dic5  C23⋊C45D5  D5×C23⋊C4  C242D10  C22⋊C4⋊D10  (D4×C10)⋊22C4  2+ 1+4.2D5  2+ 1+42D5  C158(C23⋊C4)  C23.7D30
C23⋊Dic5 is a maximal quotient of
C24.Dic5  C24.D10  (C2×C20)⋊C8  C242Dic5  C4⋊C4⋊Dic5  C10.29C4≀C2  (C22×C20)⋊C4  C42⋊Dic5  C42.Dic5  C423Dic5  C42.3Dic5  C158(C23⋊C4)  C23.7D30

31 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E5A5B10A···10F10G···10N20A20B20C20D
order122222444445510···1010···1020202020
size112224420202020222···24···44444

31 irreducible representations

dim1111122222244
type+++++--++
imageC1C2C2C4C4D4D5Dic5Dic5D10C5⋊D4C23⋊C4C23⋊Dic5
kernelC23⋊Dic5C23.D5D4×C10C2×C20C22×C10C2×C10C2×D4C2×C4C23C23C22C5C1
# reps1212222222814

Matrix representation of C23⋊Dic5 in GL4(𝔽41) generated by

2413823
40173623
001840
003623
,
24100
401700
00231
00518
,
40000
04000
00400
00040
,
401700
24300
40331824
763821
,
4003640
71356
11293540
418356
G:=sub<GL(4,GF(41))| [24,40,0,0,1,17,0,0,38,36,18,36,23,23,40,23],[24,40,0,0,1,17,0,0,0,0,23,5,0,0,1,18],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,24,40,7,17,3,33,6,0,0,18,38,0,0,24,21],[40,7,11,4,0,1,29,18,36,35,35,35,40,6,40,6] >;

C23⋊Dic5 in GAP, Magma, Sage, TeX

C_2^3\rtimes {\rm Dic}_5
% in TeX

G:=Group("C2^3:Dic5");
// GroupNames label

G:=SmallGroup(160,41);
// by ID

G=gap.SmallGroup(160,41);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,188,579,4613]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^10=1,e^2=d^5,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C23⋊Dic5 in TeX

׿
×
𝔽